EXPLORATION ASSESSMENT DATA DIGITAL FORMATS Improving geoscience data to increase discovery rates

> Anne Belanger, Analyst, Geoscience & Innovation Prospectors & Developers Association of Canada

> > Yellowknife Geoscience Forum Northwest Territories

> > > November 14, 2017

PROSPECTORS & DEVELOPERS ASSOCIATION OF CANADA **PDAC PRIORITIES**

Key Priorities

Access to Capital

Access to Land

Aboriginal Affairs Responsible Exploration Access to Skills Canadian Industry Abroad

Program Goals

- 1. Improving the type, quality, quantity and accessibility of geoscience data
- 2. Catalyzing the adoption and development of new techniques and technologies that improve exploration efficiency and effectiveness.

Competitiveness for attracting investment at risk – Canada vs. other mining nations

Signs of recovery following a prolonged industry downturn – financing and exploration activity slowly increasing

Need continual generation and analysis of geoscience data

Increasing availability of digital geoscience information including georeferenced materials will help to increase discovery rates

What is it?

• A proposal for a national standard for submission of mineral exploration assessment data in digital format

• An attempt to start a discussion on what such a standard should look like

History

2009 - Richard Moore, led the early efforts of the committee with this initiative

2014 to 2016 - PDAC established a technical team to move the project forward Lead: Charles Beaudry, Chair of PDAC Geoscience Committee Special Advisor: Ken Wright, MPH Geology: Blair Hrabi, Ana Fonseca, SRK Diamond Drilling: Michael Kociumbas, WGM Geochemistry: Pim van Geffen, REFLEX Geosciences Geophysics: Jeremy Brett, MPH PDAC: Nadim Kara, Anne Belanger

The project was guided by four principles with respect to the creation of the final guidance document:

- 1. Simplicity junior companies may lack the resources for complex assessment requirements
- 2. Durability Formats should be readable 30 years from now
- 3. Extensibility As programs and standards evolve, they must also remain compatible with older versions
- 4. Originality Submission guidelines for future reports only

The standards are modelled on Australia's Requirements for the Submission of Digital Exploration Data that was first published in April 1999, however the current version, 4.3, was published in December 2015.

Key Elements

- •Language: English or French
- •Measurement system: Metric
- •Location UTM coordinates: NAD83
 - A local grid coordinate system is allowed
 - Latitude and longitude coordinates are acceptable for airborne geophysical surveys
- •Acceptable Media
 - -Online data submission is preferable
 - -CD or DVDs, read only
 - -USB Drives (non-returnable)
 - -Hard drives (non-returnable)
- Hard copy or paper reports are unacceptable

Key Elements

- Consistent file name conventions for the four specialities
 - Drilling, geology, geochemistry and geophysics
- File names should include:
 - Project name (e.g. BlueLagoon)
 - Year (e.g. 2014)
 - Data type (e.g. DrillLithology, GeochemicalSurvey)
 - Template format (e.g. DL1, SG1)
 - File extension (e.g. csv, jpg, tif, shp)

Examples:

- BlueLagoon_2014_20_GeochemicalSurvey_SG1.csv Surface sampling data
- BlueLagoon_2014_23_DrillLithology_DL1.csv Downhole lithology data

Header data file

e.g. BlueLagoon_2014_23_DrillLithology_hdr.csv

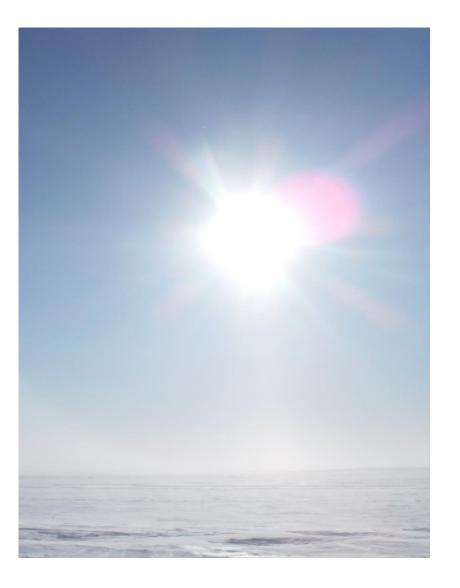
Dictionaries

 $e.g.\ Blue Lagoon_2014_23_Drill Lithology_dict_Lithology.csv$

MANIFEST FILE

Exploration Work Type *	Num	File Name	Format
Number of Files in Submission			
PDF Assessment Report			
Office Compilation			
Geological Compilation			
Geophysical Compilation			
Geochemical Compilation			
Other (specify)			
Airborne Surveys			
Aeromagnetics			
Radiometrics			
Electromagnetics			
Gravity			
Digital terrain modelling			
Other (specify)			
Ground Surveys			
Geological Mapping			
Regional			
Reconnaissance			
Prospect			
Underground			
Other (specify)			

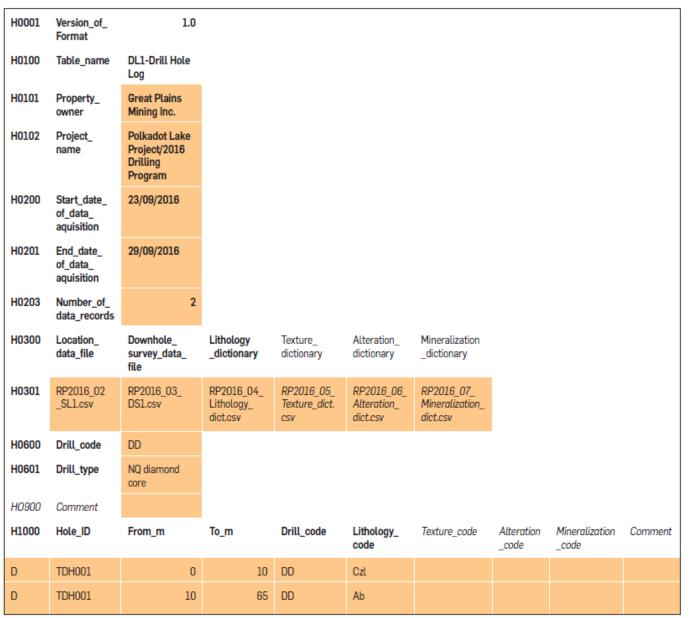
Digital Metadata


• Metadata is necessary to assess the quality and pertinence of the data for a particular application

• Submitted in CSV or tab delimited format in a header file

Three tiers of suggested data submission:

- 1. Mandatory
- 2. Recommended (e.g. cut grid coordinates)


3. Data that can be included in the mandatory PDF report

DIGITAL METADATA

Template DL1 - Drill hole log

DIGITAL METADATA

H0100										
	Table_name	SL1-Drill Hole collars								
H0101	Property_ owner	Great Plains Mining Inc.								
H0102	Project_name	Polkadot Lake Project/2016 Drilling Program								
H0200	Start_date_ of_data_ aquisition	23/09/2016								
H0201	End_date_ of_data_ aquisition	29/09/2016								
H0203	Number_of_ data_records	2								
H0300	Downhole_ survey_data_ file									
H0301	RP2016_02_ DS1.csv									
H0400	Drilling_code	RC	DD							
H0401	Drilling_ contractor	Better Drilling Inc.	Faster Drilling Inc.							
H0402	Drilling_ description	Reverse Circulation	HQ, NQ Diamond drilling							
H0500	Surveyed_ feature	Hole collar								
H0501	Geodetic_ datum	NAD83								
H0503	Projection	UTM								
H0504	Projection_ zone	17								
H0505	Survey_ instrument_ code	WGPS								
H0506	Survey_ instrument_ description	WAAS-enabled Garmin eTrex-30 GPS								
H0900	Comment									
H1000	Hole_ID	UTM_E	UTM_N	Grid_East	Grld_ North	Elevation	TD	Azimuth	Dip	Drill_co
D	TRC001	348928.1	7719052	-2015.5	504.6	325.6	50	178	-74	DD
D	TRC002	348947.6	7719037.2	1007.8	-238.6	334.9	56	0	-90	RC

Template SL1 - Drill hole collar locations

DIGITAL METADATA

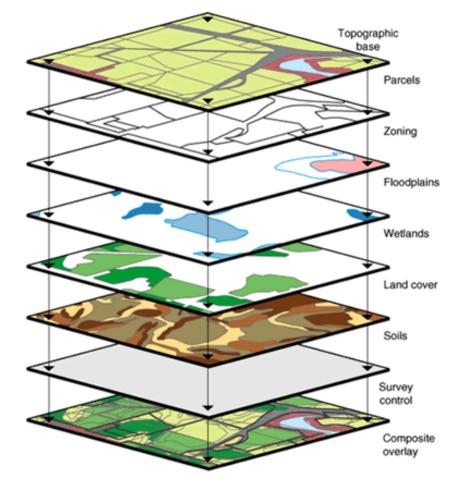

List of template tables for submission of digital assessment data.

Table Name Suffix	Content of Table	Links to Other Tables		
SL1	Drill Hole collars	DS1		
DS1	Downhole Survey	SL1		
DG1	Sample Downhole Location and Description	SL1, DS1 and various dictionaries		
DL1	Drill Hole Log	SL1, DS1 and various dictionaries		
SG1	Geochemical Sample Location and Results	SL1, DG1 and GM1		
G01	Geology Outcrop Description	Various dictionaries		
GS1	Geology Structural Description	GO1 and Structure dictionary		
GM1	Geology Mineral Occurrence	Various dictionaries		
GL1	Geology Line Data	Shapefile and various dictionaries		
GP1	Geology Polygon Data	Shapefile and various dictionaries		
PS1	Geophysics, Single Variable Results	Data columns description file,SL1, DS1		
PA1	Geophysics, Array Variable Results	Data columns description file,SL1, DS1		

GIS FILE FORMATTING

- Shapefiles are suggested to be submitted accompanied by additional files and the assessment PDF.
 - Lines and polygons should be in separate shape files.
- Important to have dictionaries when codes are used.
- Although no map or cartographic characteristics need to be stored with the lines or polygons, three key fields should be included:
 - 1. Feature_code (Feat_code)
 - 2. Feature_value_code (Feat_value)
 - 3. Interpretation_level (Int_lvl)

Canadian Approach to Digital Data

- The Canadian approach differs from the current Australian standards as it only includes the submission of the metadata required to:
 - -Locate the observation in a world coordinate system (UTM NAD83)
 - -Identify the owners of the property on which the work was done
 - -Record when the work was done
 - -Identify the laboratory and method codes used for geochemical work
 - -Identify the drilling company and record the orientation, length and geological data for drill holes
 - -Allow geophysical data to be re-processed.

FINAL ASSESSMENT REPORT SUBMISSION

What should a final assessment report look like?

- PDF report
- Manifest File
- Shapefiles for additional information
- Metadata tables for additional information. If applicable:
 - -Geophysics table data (PS1, PSA)
 - -Drill hole information (DS1, SL1, DG1, DL1)
 - -Geochemistry Information (SG1)
 - -Geological information (GO1, GS1, GM1, GL1, GP1)
- Dictionary file in order to describe short form.

Why does Canada need this?

- Canadian exploration projects return 0.77 for every dollar spent between, while Australia returns 0.97.
- Australia is currently on version 4.3 of their requirements for submission which has attributed to their exploration success.
- South Australia (984,377 km²) released a state wide 3D geophysical data compilation of public domain data, to 100km depth with an associated geoscience data package.

Geoscience Australia uses machine learning to peek below Earth's surface itnews.com.au

Next Steps

- •The PDAC is looking to partner with an province or territory interested in and willing to adopt the EADDF guidelines
- We recommend that provincial and territorial governments create an incentive to promote submission of digital assessment data by granting additional credits
- Homepage www.pdac.ca

THANK YOU

Anne Belanger Analyst, Geoscience & Innovation Prospectors & Developers Association of Canada abelanger@pdac.ca